M. Roodsarabi, M. Khatibinia, S.R. Sarafrazi
International Journal Of Optimization In Civil Engineering, 6(3):405-422
Publication year: 2016

This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as sensitivity analysis is also utilized to precisely design new holes in the interior domain. The hybrid of these gradients can yield an efficient algorithm which has more flexibility in changing topology of structure and escape from local optimal in the optimization process. Finally, instead of the conventional finite element method (FEM) a Non–Uniform Rational B–Splines (NURBS)–based IGA is applied to describe the field variables as the geometry of the domain. In IGA approach, control points play the same role with nodes in FEM, and B–Spline functions are utilized as shape functions of FEM for analysis of structure. To demonstrate the performance of the proposed method, three benchmark examples widely used in topology optimization are presented. Numerical results show that the proposed method outperform other LSMs.

topology optimization, isogeometric analysis, level set method, sensitivity analysis, Non–Uniform Rational B–Splines